Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.

Identifieur interne : 001452 ( Main/Exploration ); précédent : 001451; suivant : 001453

Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.

Auteurs : Michael F. Seidl [Pays-Bas] ; Guido Van Den Ackerveken ; Francine Govers ; Berend Snel

Source :

RBID : pubmed:22230142

Descripteurs français

English descriptors

Abstract

The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We analyzed evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a highly supported species phylogeny. We reconstructed a strikingly large last common ancestor of the Stramenopiles that contained ~10,000 genes. Throughout evolution, the genomes of pathogenic oomycetes have constantly gained and lost genes, though gene gains through duplications outnumber the losses. The branch leading to the plant pathogenic Phytophthora genus was identified as a major transition point characterized by increased frequency of duplication events that has likely driven the speciation within this genus. Large gene families encoding different classes of enzymes associated with pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns of duplications and losses leading to their expansion in extant oomycetes. This study unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic oomycetes. By the application of phylogenetic based analyses methods, it provides additional insights that shed light on the complex history of oomycete genome evolution and the emergence of large gene families characteristic for this important class of pathogens.

DOI: 10.1093/gbe/evs003
PubMed: 22230142
PubMed Central: PMC3318443


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.</title>
<author>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands. m.f.seidl@uu.nl</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Van Den Ackerveken, Guido" sort="Van Den Ackerveken, Guido" uniqKey="Van Den Ackerveken G" first="Guido" last="Van Den Ackerveken">Guido Van Den Ackerveken</name>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
</author>
<author>
<name sortKey="Snel, Berend" sort="Snel, Berend" uniqKey="Snel B" first="Berend" last="Snel">Berend Snel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22230142</idno>
<idno type="pmid">22230142</idno>
<idno type="doi">10.1093/gbe/evs003</idno>
<idno type="pmc">PMC3318443</idno>
<idno type="wicri:Area/Main/Corpus">001573</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001573</idno>
<idno type="wicri:Area/Main/Curation">001573</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001573</idno>
<idno type="wicri:Area/Main/Exploration">001573</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.</title>
<author>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands. m.f.seidl@uu.nl</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Van Den Ackerveken, Guido" sort="Van Den Ackerveken, Guido" uniqKey="Van Den Ackerveken G" first="Guido" last="Van Den Ackerveken">Guido Van Den Ackerveken</name>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
</author>
<author>
<name sortKey="Snel, Berend" sort="Snel, Berend" uniqKey="Snel B" first="Berend" last="Snel">Berend Snel</name>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Genome (genetics)</term>
<term>Oomycetes (classification)</term>
<term>Oomycetes (genetics)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Génome (génétique)</term>
<term>Oomycetes (classification)</term>
<term>Oomycetes (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genome</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Génome</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Oomycetes</term>
<term>Phylogenèse</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We analyzed evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a highly supported species phylogeny. We reconstructed a strikingly large last common ancestor of the Stramenopiles that contained ~10,000 genes. Throughout evolution, the genomes of pathogenic oomycetes have constantly gained and lost genes, though gene gains through duplications outnumber the losses. The branch leading to the plant pathogenic Phytophthora genus was identified as a major transition point characterized by increased frequency of duplication events that has likely driven the speciation within this genus. Large gene families encoding different classes of enzymes associated with pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns of duplications and losses leading to their expansion in extant oomycetes. This study unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic oomycetes. By the application of phylogenetic based analyses methods, it provides additional insights that shed light on the complex history of oomycete genome evolution and the emergence of large gene families characteristic for this important class of pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22230142</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.</ArticleTitle>
<Pagination>
<MedlinePgn>199-211</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evs003</ELocationID>
<Abstract>
<AbstractText>The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We analyzed evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a highly supported species phylogeny. We reconstructed a strikingly large last common ancestor of the Stramenopiles that contained ~10,000 genes. Throughout evolution, the genomes of pathogenic oomycetes have constantly gained and lost genes, though gene gains through duplications outnumber the losses. The branch leading to the plant pathogenic Phytophthora genus was identified as a major transition point characterized by increased frequency of duplication events that has likely driven the speciation within this genus. Large gene families encoding different classes of enzymes associated with pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns of duplications and losses leading to their expansion in extant oomycetes. This study unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic oomycetes. By the application of phylogenetic based analyses methods, it provides additional insights that shed light on the complex history of oomycete genome evolution and the emergence of large gene families characteristic for this important class of pathogens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Seidl</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands. m.f.seidl@uu.nl</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van den Ackerveken</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Govers</LastName>
<ForeName>Francine</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Snel</LastName>
<ForeName>Berend</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22230142</ArticleId>
<ArticleId IdType="pii">evs003</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evs003</ArticleId>
<ArticleId IdType="pmc">PMC3318443</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21368207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:1220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Jan 27;19(2):R81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2000 Jun;30(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10955905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jan 22;12(2):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Feb;44(2):105-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Mar;273(1):20-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15702346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Mar;2(2):112-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2003 Oct;11(10):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 8;428(6983):617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 21;431(7011):946-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2011 Dec;2(2):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1728-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Jun;31(2):200-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Aug;67(16):1800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):429-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:140-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21081314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Sep 19;16(18):1857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(7):e6133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19582169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Oct;23(10):488-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Mar;45(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1999 Oct;154(S4):S96-S124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10527921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2006 Mar;13(2):320-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Jul;27(7):1698-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11368-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7972066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Dec;18(12):619-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2009 Jan-Feb;56(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19335769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):617-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20520714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 May;16(5):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10782117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Utrecht (province)</li>
</region>
<settlement>
<li>Utrecht</li>
</settlement>
<orgName>
<li>Université d'Utrecht</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<name sortKey="Snel, Berend" sort="Snel, Berend" uniqKey="Snel B" first="Berend" last="Snel">Berend Snel</name>
<name sortKey="Van Den Ackerveken, Guido" sort="Van Den Ackerveken, Guido" uniqKey="Van Den Ackerveken G" first="Guido" last="Van Den Ackerveken">Guido Van Den Ackerveken</name>
</noCountry>
<country name="Pays-Bas">
<region name="Utrecht (province)">
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001452 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001452 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22230142
   |texte=   Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22230142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024